Recenzja rozpraw doktorskiej

1. Tematyka rozprawy

Modelowanie właściwości obiektów cieplnych, w szczególności rezystancyjnych pieców komorowych o parametrach rozłożonych, które analizowane są w rozprawie, stanowi wciąż wyzwanie. Procesy technologiczne w przemysle metalurgicznym czy ceramicznym, wykorzystujące tego typu obiekty wymagają dokładnych rozwiązań w zakresie sterowania mocą i regulacji temperatury. Dokładność tę można poprawić stosując dokładne modele obiektów cieplnych, uwzględniające m.in. nieliniowy charakter przenikania ciepła przez ściany izolacyjne i dynamiczny charakter parametrów. Modelowanie klasyczne za pomocą równań różniczkowych cząstkowych, wobec złożoności problemu, wymaga szeregu uproszczeń, co nie zawsze zapewnia dostateczną dokładność, podobnie jak modele inercyjne pierwszego rzędu z opóźnieniem, powszechnie stosowane w tym przypadku. Rozwiązanie zaproponowane przez Autorkę, oparte na modelu rozmytym, pozwala uwzględnić zmienność parametrów i nieliniowy charakter zjawiska oraz aktualny stan ciepłej obiektu. Ponadto zaproponowany model rozmyty zachowuje prostą i interpretowalną strukturę. Wobec powyższego tematykę rozprawy należy uznać za trafną, istotną i aktualną w aspekcie jej walorów poznawczych a także utylitarnych.

Tytuł rozprawy jest odpowiednio zwarty i komunikatywny. W pełni oddaje najistotniejsze elementy treściowe rozprawy. Celem badań jest opracowanie nowej metody opisu właściwości dynamicznych komorowych obiektów cieplnych o parametrach rozłożonych, pozwalającej uwzględnić jakościowe informacje dotyczące zachowania się obiektu w różnych stanach jego pracy. Jednym z wymagań stawianych opracowywaniu modeli jest zachowanie prostej, łatwo interpretowalnej struktury. Teza pracy dotyczy możliwości budowy systemu rozmytego, pozwalającego odzwierciedlać jakościową wiedzę o zachowaniu obiektu cieplnego o parametrach rozłożonych w różnych fazach jego pracy, dla potrzeb, dokładniejszego niż powszechnie stosowane modele parametryczne, modelowania i identyfikacji właściwości dynamicznych tej klasy obiektów. Zarówno cel jak i tezę pracy można uznać za poprawne, oryginalne i jednoznaczne.

Aby osiągnąć cel i udowodnić tezę, Autorka zaplanowała szereg zadań badawczych, które wypunktowano w rozdziale drugim rozprawy. Pierwsze z tych zadań ma na celu potwierdzenie jakościowych opisów charakteru zmian właściwości dynamicznych komorowych obiektów cieplnych w różnych fazach ich pracy, co jest przesłanką do użycia modeli rozmytych. Drugie zadanie polega na opracowaniu rodziny rozmytych modeli komorowego urządzenia grzejnego, poprzez rozmytą kombinację modeli inercyjnych pierwszego rzędu. Trzecie zadanie dotyczy analizy opracowanych
modeli rozmytych i ocenę jakości modelowania. Zadanie czwarte obejmuje badania symulacyjne modeli rozmytych w dziedzinie czasu i częstotliwości dla różnych parametrów fizycznych modelowanych obiektów. Ostatnie zadanie polega na weryfikacji eksperymentalnej opracowanych modeli z wykorzystaniem rzeczywistych obiektów elektrotechnicznych. Zakres zaplanowanych prac badawczych w moim przekonaniu pozwala na osiągnięcie celu i wykazanie prawdziwości tezy.

2. Charakterystyka rozprawy

Rozprawa liczy 134 strony. Składa się z dwunastu rozdziałów oraz bibliografii zawierającej 99 pozycji. Brak powszechnie spotykanych w tego typu pracach naukowych wykaże symboli, skrótów, rysunków i tabel.

Modele rozmyte charakteryzują czasowych obiektów cieplnych o stałych rozłożonych zaprezentowano w rozdziale siódmym. Autorka definiuje łącznie sześć modeli rozmytych wyrażających płynną zmianę inercyjności w zależności od stanu cieplnego obiektu, dzieląc je na trzy grupy: modele dla fazy rozgrzewki, modele dla fazy stępnienia i modele dla obu faz. W każdej z tych grup opracowano modele, w których zmienną wejściową jest „temperature change” (różnica temperatury w kolejnych chwilach czasu) lub „temperature difference” (różnica temperatury aktualnej i temperatury nasycenia). Podano
struktury i parametry modeli, zdefiniowano zbiory rozmyte i modele Takagi-Sugeno-Kanga. Modele TSK miały od dwóch do pięciu reguł w zależności od wariantu. Wykorzystując algorytmy genetyczne optymalizowano zarówno parametry modeli inercyjnych jak i parametry funkcji przynależności. Obliczenia wykonano dla różnych typów funkcji przynależności i dwóch typów obiektów cieplnych: z izolacją lekką i ciężką, porównując wyniki z modelem inercyjnym pierwszego rzędu.

W rozdziale ósmym przedstawiono problematykę identyfikacji zmienności parametrów dynamicznych obiektu cieplnego w dziedzinie częstotliwości. Przeprowadzono analizy zmienności parametrów dynamicznych czlonu inercyjnego pierwszego rzędu w zależności od częstotliwości, notując istotne zmiany stałej czasowej i wzmocnienia w różnych zakresach częstotliwości. Wyniki tych analiz zobrazowano charakterystykami amplitudową i częstotliwościową, porównując je z charakterystykami eksperymentalnymi. Obserwując duże rozbieżności pomiędzy tymi charakterystykami w zakresie średnich częstotliwości, Autorka proponuje wprowadzenie modelu inercyjnego ułamkowego rzędu dla tego zakresu częstotliwości. Konkludując wyniki przeprowadzonych badań, Autorka proponuje budowę modelu rozmytego z częstotliwością mocy jako zmiennej wejściowej i z trzema funkcjami przynależności: dla niskiej, średniej i wysokiej częstotliwości.

W rozdziale dziesiątym Autorka analizuje zgodności rozmytych modeli obiektu cieplnego opracowanych dla dziedzinę czasu i częstotliwości. Modele te wykazują zgodność dla stanu nasycenia i niskich częstotliwości. Natomiast dla stanu początkowego i wysokich częstotliwości rozbieżności pomiędzy modelami są znaczne, przekraczające 800% dla wzmocnienia obiektu z izolacją lekką. Autorka tłumaczy te rozbieżności niewielką dokładnością aproksymacji charakterystyki czasowej dla stanu początkowego.

W rozdziale jedenastym opisano weryfikację eksperymentalną modeli rozmytych z wykorzystaniem obiektu rzeczywistego – pieca przemysłowego o izolacji włóknistej i mocy znamionowej 10 kW. W związku ze zjawiskiem opóźnienia występującego w układzie pomyarowo-sterującym, modele rozmyte uzupełniono o dodatkowy człon opóźniający. Dla fazy rozgrzewu przeprowadzono dwa eksperymenty różniące się historią cieplną obiektu. Trzeci eksperyment dotyczył modelowania łącznego fazy rozgrzewu i stygnięcia. W konkludzie tych badań Autorka zauważa, że modele rozmyte dają możliwość nieporównanie lepszego odzwiercudzenia odpowiedzi skokowej obiektu niż powszechnie stosowany model inercyjny pierwszego rzędu z opóźnieniem. Typy funkcji przynależności mają drugorzędne znaczenie na dokładność modelowania. Wyniki eksperymentów dowodzą również znacznej czułości parametrycznej modelu rozmytego na stan cieplny obiektu. Uzyskane w wyniku optymalizacji parametry długości inercyjnego dla różnych faz przebiegu dają cenę informację ilościową na temat pracy obiektu w różnych stanach. Modelowanie rozmyte charakterystyk częstotliwościowych
charakteryzuje się błędnymi podobnymi rzędami dla różnych wersji modelu, jednak widać istotne różnice w wartościach parametrów oraz w kształcie charakterystyki pomiędzy poszczególnymi wersjami. Szczególnie w zakresie bardzo niskich częstotliwości. Autorka tłumaczy to tym, że ze względu na specyfikę obiektu nie można było wykonać pomiarów i dopasować modeli w tym zakresie częstotliwości.

Rozdział dwunasty zawiera podsumowanie, wnioski i kierunki dalszych badań. Autorka przypomina motywację do podjęcia badań, uzasadnia zakres przeprowadzonych badań oraz streszcza zrealizowane zadania naukowe i główne osiągnięcia. Uznaje, że osiągnięta założony cel badań oraz dowiodła prawdziwości postawionej tezy. Na koniec przedstawia kierunki dalszych badań.

Układ redakcyjny rozprawy nie budzi zastrzeżeń. Praca napisana jest starannie, poprawnym językiem naukowym z właściwym słownictwem specjalistycznym i odpowiednią ścieśniać sformułowania. Sekwencja tematyki prezentowanej w kolejnych rozdziałach jest właściwa: od informacji wstępnych dotyczących stanu wiedzy, klasyfikacji obiektów cieplnych, metod ich modelowania i elementów teorii zbiorów rozmytych, poprzez opis opracowanych przez Autorkę metod identyfikacji chwilowych parametrów dynamicznych obiektów cieplnych w dziedzinie czasu i częstotliwości oraz opis budowy modeli rozmytych, po analizę zgodności proponowanych modeli i ich weryfikację doświadczalną. Tytuły rozdziałów w pełni zgodne są z ich treścią. Bibliografia zawiera prace ścisłe związane z tematyką rozprawy, jednak tylko niewielka ich część (ok. 10%) to literatura najnowsza, z ostatnich 10 lat.

3. Uwagi krytyczne

Uwagi ogólne:

1. W rozdziale pierwszym Autorka opisuje stan wiedzy i genezę badań. Lektura tego rozdziału pozostawia pewien niedosyt (rozdział liczy 2,5 strony). Przegląd literatury dotyczącej modelowania obiektów cieplnych powinien być bardziej gruntowny. Istniejące modele opisane w literaturze, szczególnie najnowsze rozwiązania, powinny być krótko scharakteryzowane i porównane, z podkreśleniem ich wad i zalet.

2. W podrozd. 5.1, na str. 29 Autorka opisując funkcje przynależności zauważa, że funkcje gaussowskie i sigmoidalne wymagają większej liczby parametrów niż funkcje złożone z odcinków prostych. Nie jest to prawdą, gdyż funkcje gaussowskie i sigmoidalne zdefiniowane są za pomocą dwóch parametrów, a funkcje złożone z odcinków prostych wymagają co najmniej dwóch parametrów.

Niejasne jest zdanie dot. funkcji złożonych z odcinków prostych: „Łatwo można modyfikować ich parametry”. Co to znaczy „łatwo”?

Niejasne jest również zdanie „Funkcje te umożliwiają taką definicję poszczególnych parametrów, aby suma stopni przynależności dla każdej wartości x wynosiła 1”. Jak wygląda definicja, o której mowa?

Wyjaśnienia wymaga również zdanie dot. funkcji złożonych z odcinków prostych: „Ich wadą jest to, że są nieciągle różniczkowalne”. Dlaczego te funkcje muszą być różniczkowalne?

Czym podparte jest twierdzenie, że główną zaletą wielomianowych funkcji przynależności „jest możliwość znacznego zwiększenia dokładności modelu rozmytego”.
Ile parametrów potrzeba do definicji wielomianowych funkcji przynależności? Czy jest ich więcej niż w odpowiadających im kształtem funkcjach innych typów?

Dlaczego parametry funkcji wielomianowej „drugiego rzędu” (chyba powinno być stopnia?) są „łatwe do identyfikacji przez eksperta”?

3. W podrozdz. 5.3 na str. 35 przedstawiono model systemu rozmytego Mamdaniego. Czy w modelu tym możemy uwzględniać niepewność pomiaru zmiennych wejściowych? W jaki sposób? Czy modele rozmyte opracowane w ramach pracy uwzględniają błędy pomiaru zmiennych wejściowych?

4. W podrozdz. 5.3.2, w części przestankowej regul rozmitych \((5.31)\) występują zmienne \(x_i\), a w części konkluzyjnej \(x_i^*\). Jaka jest różnica pomiędzy nimi?

5. W podrozdz. 5.3.2, na str. 39 zredukowano wzór \((5.32)\) do postaci \((5.34)\). Przekształcenie to wymaga wyjaśnienia: (i) dlaczego stopień spełnienia przesłanki \(P_k\) zastąpiono stopniem przynależności \(x_i\) do zbioru \(A_k\), (ii) gdzie podziały się zmienne \(x_2^*, x_3^*, ..., x_n^*\) w \((5.34)\)?

7. W końcowych akapitach podrozdz. 7.3.2 mowa o dodatkowej optymalizacji prowadzącej do niewielkiej redukcji błędu. Na czym ta optymalizacja polegała?

8. W podrozdz. 11.1, na str. 110 (ostatni akapit) mowa o korekcji trendu sygnału temperatury oraz przesunięciu w fazie sygnału MBS. Czy te manipulacje nie wypaczają obrazu zachowania obiektu rzeczywistego?

9. W podrozdz. 11.2, str. 114 wprowadzono termin „granulacja informacji cząstkowej regul rozmitych”. Co on oznacza?

10. W pracy nie ma wzmianki o implementacji proponowanych modeli rozmitych. W jakim środowisku były przeprowadzane obliczenia? Z jakich narzędzi programistycznych Autorka korzystała?

11. W pracy brakuje także dyskusji wpływu błędów pomiarowych na wyniki, czyli na wartości szacowanych parametrów oraz na błędy modeli.

Uwagi szczegółowe:

1. Str. 12 – zdania przed wzorami \((4.2)\) i \((4.3)\) powinny zaczynać się z dużych liter.

2. W podrozdz. 4.1 temperaturę oznacza się symbolem „\(T\)”. W kolejnych rozdziałach symbolem „\(\vartheta\)”.

3. Str. 40, wzór \((6.1)\) – nie objaśniono co oznacza góry indeks „\(m\)” przy symbolu temperatury.
4. Tytuł rozdziału 6.2.1 jest niepełny: „Wpływ sposobu wyznaczania chwilowych parametrów modelu inercyjnego”. Wpływ na co?

5. Str. 44 – zdanie: „Natomiast wartości z końca reprezentują ...”. O jakim końcu mowa?

6. Str. 48 – „Wykonano 100 symulacji nagrzewania różnych obiektów cieplnych. Czas każdej symulacji wynosił 5-105 s, czyli około 140 godzin”. To oznacza, że przeprowadzenie 100 symulacji trwało ok. 19 miesięcy?

7. Str. 77 – „Najlepsze dopasowanie osiągnięły modele rozmieścił wykorzystujące zbiory rozmieścił z prostokątnymi funkcjami przynależności.” W badaniach nie testowano prostokątnych funkcji przynależności.

8. Str. 77, tabela 7.9 – czy wartości parametrów $a = b = 0$ dla wersji 1 modelu są poprawne?

10. Str. 80, tabela 7.16 – wartości parametrów dla wersji 3 modelu są różne od tych zamieszczonych w tabeli 7.14. Wartości parametrów dla pozostałych wersji są jednakowe w obu tabelach. Jak to wytłumaczyć?

11. Str. 88 – na rysunkach 8.1 i 8.2 temperatura przyjmuje wartości ujemne (nawet poniżej zera bezwzględnego!).

12. Str. 96 – w regule R3 powinna występować stała czasowa i wzmożenie dla wysokiej częstotliwości, a nie dla niskiej częstotliwości.

13. Str. 97 i 111 – w licznikach wzorów (9.1), (9.2), (11.5) i (11.6) brakuje stopni przynależności do zbiorów „middle”.

14. Str. 108 – pierwszy akapit błędnie zaczyna się od słowa „frequency”.

15. Bibliografia nie jest zbyt starannie sporządzona. Brak jednolitego schematu podawania pozycji literatrowych, w niektórych pozycjach literatury brakuje stron (np. [25], [44], [77]), inne są niekompletne (np. [50], [98]), monografia habilitacyjna promotora podana jest jako rozprawa doktorska [42].

4. Osiągnięcia zawarte w rozprawie

Do najważniejszych, twórczych elementów rozprawy zaliczam:

- Opracowanie metod identyfikacji chwilowych parametrów dynamicznych obiektów cieplnych z wykorzystaniem parametrycznego modelu członu inercyjnego pierwszego rzędu oraz przeprowadzenie analiz zmienności właściwości dynamicznych obiektu cieplnego w dziedzinie czasu i częstotliwości.

- Opracowanie modeli rozmitych charakterystyk czasowych obiektów cieplnych o stałych rozłożonych, uwzględniających różne stany pracy obiektu poprzez kombinację rozmitych dwóch modeli inercyjnych pierwszego rzędu, zdefiniowanych dla fazy początkowej i fazy nasycenia.
Opracowanie modeli rozmitych charakterystyk częstotliwościowych obiektów cieplnych o stałych rozłożonych, uwzględniających różne stany pracy obiektu poprzez kombinację rozmity trzech charakterystyk amplitudowych i fazowych modeli inercyjnych, zdefiniowanych dla niskich, średnich i wysokich częstotliwości.

Podjęte przez Autorkę w ramach pracy zadania badawcze układają się w logiczną całość mającą na celu udowodnienie postawionej tezy. Na podstawie wyników przeprowadzonych badań można stwierdzić, że teza została wykazana, a cel pracy osiągnięty. Autorka udowodniła, że opracowane przyni Systemy rozmity wykazują większą dokładność w modelowaniu i identyfikacji właściwości dynamicznych obiektów cieplnych niż powszechnie stosowane modele parametryczne.

Należy docenić umiejętności Autorki w zakresie planowania i przeprowadzania eksperymentów, zarówno symulacji komputerowych jak i badań na rzeczywistych obiektach cieplnych oraz jej skrupulatność w analizowaniu wyników, formułowaniu wniosków i prezentacji rezultatów.

5. Wniosek końcowy

Uważam, że zakres tematyczny rozprawy doktorskiej mgr inż. Joanny Jojczyk i osiągnięte w niej oryginalne wyniki w zakresie modelowania rozmitych właściwości obiektów cieplnych, lokują ją w obszarze zastosowań współczesnej informatyki w dziedzinie nauk technicznych. Rozprawa stanowi oryginalne rozwiązanie problemu naukowego i wskazuje na wysoki poziom wiedzy teoretycznej Autorki z dyscypliny informatyka, a także na umiejętność samodzielnego prowadzenia prac naukowej. Pomimo zamieszczonych powyżej uwag krytycznych moja generalna opinia o pracy jest pozytywna.

[Podpisanie]